ServiceClient
Primary entry point for the MinT API
Overview
ServiceClient is the main interface for accessing MinT’s functionality. All operations begin by creating a ServiceClient instance.
Key Methods
Server Information
get_server_capabilities()
get_server_capabilities_async()Query supported features and capabilities of the MinT server.
Training Client Creation
create_lora_training_client(
base_model,
rank=32,
train_mlp=True,
train_attn=True,
train_unembed=True,
seed=None
)Initialize a TrainingClient for LoRA fine-tuning.
Parameters:
base_model- Model identifier (e.g., “Qwen/Qwen3-4B-Instruct-2507”)rank- LoRA rank dimension (default: 32)train_mlp- Train MLP layers (default: True)train_attn- Train attention layers (default: True)train_unembed- Train unembedding layer (default: True)seed- Random seed for reproducibility
Load from Checkpoint
create_training_client_from_state(path)
create_training_client_from_state_with_optimizer(path)- from_state - Load weights only
- from_state_with_optimizer - Load weights and optimizer state
Sampling Client Creation
create_sampling_client(model_path=None, base_model=None)Create a SamplingClient from either:
- A saved checkpoint (
model_path) - A base model (
base_model)
REST Client
create_rest_client()Access REST endpoints for checkpoint management and metadata operations.
Async Variants
All methods include async variants (e.g., create_lora_training_client_async()).